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Memory-Event-Triggered H∞ Output Control
of Neural Networks With Mixed Delays

Shen Yan , Zhou Gu , Member, IEEE, and Sing Kiong Nguang , Senior Member, IEEE

Abstract— This article investigates the problem of memory-
event-triggered H∞ output feedback control for neural networks
with mixed delays (discrete and distributed delays). The prob-
ability density of the communication delay among neurons is
modeled as the kernel of the distributed delay. To reduce
network communication burden, a novel memory-event-triggered
scheme (METS) using the historical system output is introduced
to choose which data should be sent to the controller. Based on
a constructed Lyapunov–Krasovskii functional (LKF) with the
distributed delay kernel and a generalized integral inequality,
new sufficient conditions are formed by linear matrix inequal-
ities (LMIs) for designing an event-triggered H∞ controller.
Finally, experiments based on a computer and a real wireless
network are executed to confirm the validity of the developed
method.

Index Terms— Distributed delay, event-triggered control,
neural networks, time-delay systems.

I. INTRODUCTION

OVER the past decades, a considerable effort has been
devoted to neural networks due to their wide applications

in computer vision, deep learning, image encryption, Chua’s
circuit [1]–[7], and the references therein. It is noted that these
applications are mainly dependent on the dynamic behaviors
of neural networks, such as stability, chaos, and oscillatory.
For example, the synchronization issue of neural networks
utilizing the chaotic features is usually applied in image
encryption. To reach the synchronization of master and slave
neural networks, a synchronization issue is converted into a
control problem of an error system, where a controller is
designed to drive the slave neural network to track the master
neural network in [4]. In addition, when the performance
and stability of neural networks are deteriorated by noises or
disturbances, a controller is usually used to improve them.
In practical systems, time-delay problem is often encountered,
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which has gained much attention and inspired many results, for
example, stability analysis [8]–[10] and stabilization [11]. It is
common that there exist communication delays in the imple-
mentation of neural networks in real environments, which
can deteriorate the system performance even make the system
unstable. Thus, the issue of stabilization for neural networks
with time delays becomes an interesting and hot research
topic to obtain a desired system performance or reduce the
convergence time. A great deal of interesting results have been
addressed for this problem in [12]–[14] and the references
therein. Recently, as the development of digital communication
networks, network-based neural networks are considered for
control [15] and state estimation [16] problems. Han et al. [15]
addressed the network-based H∞ control for neural networks
with distributed delay, data quantization, and packet dropouts.
In [16], the issue of networked H∞ state estimation is studied
for neural networks subject to network constraints, including
the network-induced delay.

In real networked systems, the bandwidth of communication
channel is limited usually, which is not considered in the
aforementioned works. Thus, event-triggered scheme (ETS)
is investigated to save the limited network resources and has
gained growing attention from many researchers [17]–[20].
The problem of robust event-triggered adaptive control for
uncertain nonlinear systems is developed in [21], where the
full state constraints, system uncertainties, and measurement
errors are considered simultaneously. In [22], an ETS using
the relative error among the present system state and the last
triggered state is proposed to ensure the input-to-state stability
of both linear and nonlinear systems. Inspired by this work,
various event triggering conditions are reported, such as peri-
odic ETS [23], switching ETS [24], and dynamic ETS [25].
Different from these results knowing the stabilization con-
troller in advance, Yue et al. [26] proposed a codesign method
for handling the event-triggered control of linear networked
control systems with communication delay, where the parame-
ters of ETS and controller gain are designed simultaneously.
For neural networks, following the codesign idea presented in
[26] and [27] studies the issue of decentralized H∞ control
under ETS and cyberattacks. To cast the codesign conditions
into linear matrix inequalities (LMIs), Zha et al. [27] assumed
the control matrix satisfying full column rank, which is also
assumed in [15]. Ding et al. [28] developed a new switched
control strategy to cope with the stabilization issue of neural
networks under the switching ETS [24]. The event-triggered
synchronization control of switched delayed neural networks
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is addressed in [29]. By employing the mode-dependent aver-
age dwell time approach, Yan et al. [30] investigated the
design of sliding mode controller for switched neural networks
with ETS.

Notice that the works of [26]–[30] only utilize the instant
system information to design the triggering conditions, where
the continuous system dynamics over a finite-time interval is
not considered. Different from these results, Zhang et al. [31]
proposed a novel ETS using the accumulation error of the
system state, which could be helpful to further save network
resources. However, under such triggering condition, it is
difficult for codesigning the triggering parameters and the con-
troller gain. Mousavi et al. [32] studied an integral-based ETS
based on the average value of historical system state to atten-
uate the effect on control performance induced by stochastic
measurement noise. In [32], the integral term induced by the
triggering condition is treated via an approximation approach,
which will result in the approximation error. In addition,
the controller design methods in [27], [30], [32] are feasible
only when all system states are available. Unfortunately, this
requirement on the system state is hard to be realized in
many practical applications [33], particularly for relatively
large-scale neural networks [34], [35]. For neural networks
with discrete and distributed delays, a few results about
the event-triggered H∞ control with memory-event-triggered
scheme (METS) and measurement output are investigated,
which motivates the present work.

This article studies the design of H∞ static output controller
for neural networks with discrete and distributed delays under
the METS. A practical wireless network is built up to verify
the effectiveness of the proposed ETS. We summarize the main
contributions as follows.

1) A new METS utilizing the mean of measurement output
is proposed to release the overoccupation of limited
network bandwidth, and a constant scalar is inserted into
the triggering condition to exclude the Zeno behavior.
Compared with the existing ETS in [20] and [36] using
instant system output, the proposed METS has the poten-
tial to reduce some unnecessary transmissions induced
by the stochastic fluctuation of system dynamics.

2) The communication delays among neurons are described
as a distributed delay term with a kernel representing the
probability density and the integral term caused by the
proposed METS can be viewed as another distributed
delay term. The above two distributed delay terms are
utilized directly in the design of Lyapunov–Krasovskii
functional (LKF). Then, a novel integral inequality is
applied to handle the distributed delay terms and derive
the stability conditions. Compared with the existing
method [37] using Legendre polynomials to approximate
the kernel, the approximation error is avoided and the
decision variables are decreased by the proposed LKF
method. Moreover, the design conservativeness caused
by approximation error will be eliminated.

3) By a proposed separation approach based on the Finsler
lemma, the rank constraints on control matrix in some
existing results [15], [27] are not required anymore.
Moreover, the controller gain solved by the conventional

left- and right-multiplying technique in [20] is dependent
on the inverse of Lyapunov variable, while this coupling
is removed by our proposed approach. Then, sufficient
conditions are established via LMIs, which ensures
the uniform ultimate bounded stability of the neural
networks with prescribed H∞ performance.

Notation: In this article, �·� is the Euclidean norm in R
n .

The transpose of a vector or matrix is denoted by the super-
script “T .” X⊥ represents the kernel of X . He(X) equals

X T + X . The notation

�
k
j

�
means the binomial coefficients

given by (k!/((k − j)! j !)). ⊗ refers to the Kronecker product.

II. PRELIMINARIES

Consider a complex dynamic system modeled by the fol-
lowing delayed neural networks:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ N0ψ(x(t)) + N1ψ(x(t − τ ))

+ N2

� t

t−τ
g(v)ψ(x(v))dv + Bu(t)+ D1ω(t)

y(t) = C1x(t)

z(t) = C2x(t)+ D2ω(t)

(1)

where x(t) = col{x1(t), x2(t), . . . , xn(t)} ∈ R
n is the

state vector, y(t) ∈ R
r is the system output, ψ(x(t)) =

col{ψ1(x1(t)), ψ2(x2(t)), . . . , ψn(xn(t))} ∈ R
n denotes the

neuron activation function, u(t) ∈ R
m is the control input,

ω(t) ∈ R
p satisfying ω(t) ∈ L2[0, ∞) is the external

disturbance, z(t) ∈ R
q is the controlled output, the constant

scalar τ denotes the discrete and distributed delays, and A,
N0, N1, N2, B , C1, C2, D1, and D2 are known real matrices
and compatible with others. The pairs (A, B) and (A, C1) are
assumed to be controllable and detectable, respectively. The
kernel of the distributed delay g(v) is used to represent the
probability density function of communication delay among
neurons, which satisfies

	 0
−τ g(v)dv = 1 and the following

assumption.
Assumption 1: For the kernel g(v) of the distributed delay

term
	 0
−τ g(v)ψ(x(t + v))dv, there exists a vector g(v) =

[ g0(v) · · · gi(v) · · · gα(v) ]T , g0(v) � g(v), i = 0, 1, . . . , α
with α ∈ N and v ∈ [−τ, 0] satisfying

dg(v)
dv

= Gg(v) (2)

where gi(v) are linear independent,
	 0
−τ g(v)gT (v)dv > 0, and

G ∈ R
α×α .

The neural activation function ψ(·) is usually nonlinear,
which is difficult to be treated in stability analysis and syn-
thesis. To deal with such difficulty with the same assumption
in [29], the neural activation function ψ(·) is supposed to meet
the following condition:

(ψ(x)− L1x)T (ψ(x)− L2x) ≤ 0 (3)

where L1 and L2 are two real constant matrices and satisfy
L2 − L1 ≥ 0.

Since the network bandwidth is limited, unnecessary data
transmission will lead to a waste of the network communica-
tion resources. In order to decrease communication frequency,
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an METS is presented as

sk+1 = min
s

{s ≥ sk |eT (s)�e(s) ≥ δ ŷ(sk)
T�ŷ(sk)+ σ } (4)

where δ ∈ (0, 1) is the triggering threshold parameter, σ > 0,
e(s) = (1/h)

	 s
s−h y(v)dv− ŷ(sk), ŷ(sk) = (1/h)

	 sk

sk−h y(v)dv,
y(s) is the current system output, ŷ(sk) and ŷ(sk+1) mean the
last and next triggered data, respectively, h is the integration
time interval, and � is the positive weighting matrix.

Remark 1: The state and measured output of systems are
highly possible to be inserted with some stochastic fluctuations
caused by disturbances or noises in real-world applications.
However, most existing ETSs [26]–[30] rely on instantaneous
measured output, which are sensitive to such fluctuations and
may trigger a lot of unnecessary signals. In order to adapt this
scenario and increase the robustness of ETS against stochastic
fluctuations, the average output over a given time interval h is
introduced to construct the METS (4), which is more practical
and has the potential to suppress such random fluctuations.
Then, the data transmission is reduced and more network
bandwidth can be saved than the conventional ETSs.

Remark 2: To exclude the Zeno phenomenon (infinite trig-
gering events in finite period) in continuous-time ETS, a pos-
itive term σ is added in the METS by the similar way in
[20]. With the help of this term, a positive lower bound of the
interevent time can be obtained even though ŷ(sk) = 0, which
guarantees no Zeno behavior.

Remark 3: As h → 0, e(s) = (1/h)
	 s

s−h y(v)dv − ŷ(sk)
becomes e(s) = y(s)−y(sk). Then, the triggering condition (4)
is reduced to

sk+1 = min
s

{s > sk |eT (s)�e(s) ≥ δy(sk)
T�y(sk)+ σ } (5)

which is the existing ETS in [20] with � = I and [36] with
σ = 0.

Denote the overall network communication delay from event
generator to controller by a constant scalar h1, which satisfies

tk = sk + h1 < sk+1 + h1 = tk+1, k ∈ N. (6)

Then, considering the network communication delay and
zero-order holder (ZOH), the triggering condition (4) implies
that

	T (t)�	(t) < δ(ŷ(sk))
T�ŷ(sk)+ σ, t ∈ [tk, tk+1) (7)

where 	(t) � (1/h)
	 t−h1

t−h2
y(v)dv − ŷ(sk), h2 = h1 + h.

According to the above analysis, the static output controller
is described as

u(t) = K ŷ(sk) = K C1 x̂(sk), t ∈ [tk, tk+1) (8)

where the controller gain K needs to be designed later.
Therefore, substituting (8) and 	(t) defined in (7) into (1),

the closed-loop system described by a system with distributed
input delay is given as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)+ N0ψ(x(t)) + N1ψ(x(t − τ ))

+ N2I1

� 0

−τ
G (v)ψ(x(t + v))dv − B K 	(t)

+ B K C1I2

� t−h1

t−h2

F (v)x(v)dv + D1ω(t)

z(t) = C2x(t)+ D2ω(t)

(9)

where

G (v) � g(v)⊗ In, g0(v) = g(v)

g(v) = [g0(v), . . . , gα1(v)]T

F (v) � f(v)⊗ In, f0(v) = 1/h

f(v) = [ f0(v), . . . , fα2 (v)]T .

This article aims to obtain the static output feedback con-
troller (8) such that the following conditions hold.

1) For ω(t) = 0, the closed-loop system (9) is uniformly
ultimately bounded.

2) For any ω(t) 
= 0 and zero initial condition, the con-
trolled output z(t) satisfies� ∞

0
zT (t)z(t)dt < γ 2

� ∞

0
ωT (t)ω(t)dt (10)

where γ represents the H∞ index.

The following definition and technical lemmas are useful
for obtaining the main results.

Definition 1 [20]: For the system (9) with ω(t) = 0,
if there exists a compact set U ∈ R

n such that for any
x(t0 + θ) = xt0 ∈ U , θ ∈ [−h1, 0], there exists a σ > 0
and a number T (σ, xt0) such that �x(t)� < σ , ∀t ≥ t0 + T ,
the state of system (9) with ω(t) = 0 is uniformly ultimately
bounded.

Lemma 1 [38]: Given a positive symmetric matrix U ∈
R

n×n and a vector g(v) satisfying (2) in Assumption 1, one has� η2

η1

x T (v)U x(v)dv ≥ [∗](W ⊗ U )

� η2

η1

G (v)x(v)dv (11)

with W −1 = 	 η2

η1
g(v)gT (v)dv > 0 and G (v) = g(v)⊗ In .

Remark 4: If the components of vector g(v) are chosen as
Legendre polynomials

gi(v) = Li

�
η2 − v

η2 − η1

�
= (−1)i

i

j=0

(−1) j

�
i
j

��
i + j

j

��
η2 − v

η2 − η1

� j

with W −1 = diag{η2 − η1, ((η2 − η1)/3), . . . ,
((η2 − η1)/(2α + 1))} for i = 0, . . . , α, one can get
that (11) holds. This implies that (11) in Lemma 1 covers the
Bessel–Legendre inequality in [37] as a special case.

Remark 5: By applying the presented METS with weight-
ing function, the closed-loop H∞ output control system is
established as a novel distributed delay system. The distributed
delay term can be approached by Legendre polynomials [37],
which could lead to approximation error and conservative-
ness. Thus, the problem of treating the distributed delay and
eliminating the approximation error is difficult and challenge.
To solve this problem, a novel integral inequality (11) in
Lemma 1 rather than Bessel–Legendre inequality based on
Legendre polynomials is adopted. Then, the distributed delay
term with weighting function in (9) can be treated directly,
which avoids the approximation error.
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III. MAIN RESULTS

Theorem 1 gives the sufficient conditions for guaranteeing
the H∞ stability of the system (9) under the METS (4).
In terms of Theorem 1, the corresponding conditions for code-
signing the output controller gain and triggering parameters are
formed in Theorem 2.

Theorem 1: For given constants τ , h, h1, μ, ν, and δ, under
the METS (4) and controller (8), the system (9) is uniformly
ultimately bounded with a prescribed H∞ index γ if there exist
symmetric matrices PN , � > 0, Q1 > 0, Q2 > 0, Q3 > 0,
R1 > 0, R2 > 0, and R3 > 0 and matrices X1 and X2 such
that

P̂N > 0 (12)

�+ H e(X Y ) < 0 (13)

where

P̂N = PN + diag{0n,W1 ⊗ Q1,W2 ⊗ Q2,W3 ⊗ Q3}
� =

�
�1 �2

�T
2 −I

�
, L̄ =

�
L̄1 L̄2

L̄ T
2 I

�
L̄1 = L T

1 L2 + L T
2 L1

2
, L̄2 = L T

1 + L T
2

2
�1 = H e(H T PN M)+ δET

1 �E1 − νET
2 L̄ E2

+ diag{0n,�12,�13,�14,�15,�16,�17,�18,�19,

�110,�111}
�2 = [ 0n C2 0n 0n 0n 0n,(α1+1)n 0n,(α2+1)n

0n,(α3+1)n 0n,r D2 0n,q ]
E1 = [ 0r,n 0r,n 0r,n 0r,n 0r,n 0r,n

0r,(α1+1)n C1I2 0r,(α3+1)n −Ir 0r,p ]
E2 =

�
0n In 0n 0n 0n 0n,(α1+1)n 0n,(α2+1)n 0n,(α3+1)n 0n,r 0n,p

0n 0n 0n 0n In 0n,(α1+1)n 0n,(α2+1)n 0n,(α3+1)n 0n,r 0n,p

�
�12 = Q1 + h1 R1 + σ

1
3 I, �13 = −Q1 + Q2 + h R2

�14 = −Q2, �15 = Q3 + τ R3, �16 = −Q3

�17 = −W1 ⊗ R1, �18 = −W2 ⊗ R2

�19 = −W3 ⊗ R3, �110 = −�, �111 = −γ 2 I

X = 
X T

1 X T
2 0n 0 0n 0n,(α1+1)n 0n,(α2+1)n

0n,(α3+1)n 0n,r 0n,p 0n,q
�T

Y = [−I A 0n 0n N0 N1 0n,(α1+1)n

B K C1I2 N2I1 − B K D1 0n,q]
M = [M1 M2 M3 M4], H = [H1 H2 H3]

M1 =

⎡⎢⎢⎣
In 0n 0n

0(α1+1)n,n F (0) −F (−h1)
0(α2+1)n,n 0(α2+1)n,n F (−h1)
0(α3+1)n,n 0(α3+1)n,n 0(α3+1)n,n

⎤⎥⎥⎦

M2 =

⎡⎢⎢⎣
0n 0n 0n

0(α1+1)n,n 0(α1+1)n,n 0(α1+1)n,n

−F (−h2) 0(α2+1)n,n 0(α2+1)n,n

0(α3+1)n,n G (0) −G (−τ )

⎤⎥⎥⎦

M3 =

⎡⎢⎢⎣
0n,(α1+1)n) 0n,(α2+1)n)

−�F 0(α1+1)n,(α2+1)n

0(α2+1)n,(α1+1)n −�F
0(α3+1)n,(α1+1)n 0(α3+1)n,(α2+1)n

⎤⎥⎥⎦

M4 =

⎡⎢⎢⎣
0n,(α3+1)n) 0n,r 0n,p

0(α1+1)n,(α3+1)n 0(α1+1)n,r 0(α1+1)n,p

0(α2+1)n,(α3+1)n 0(α2+1)n,r 0(α2+1)n,p

−�G 0(α3+1)n,r 0(α3+1)n,p

⎤⎥⎥⎦

H1 =

⎡⎢⎢⎣
0n In 0n,3n

0(α1+1)n,n 0(α1+1)n,n 0(α1+1)n,3n

0(α2+1)n,n 0(α2+1)n,n 0(α2+1)n,3n

0(α3+1)n,n 0(α3+1)n,n 0(α3+1)n,3n

⎤⎥⎥⎦

H2 =

⎡⎢⎢⎣
0n,(α1+1)n 0n,(α1+1)n

I(α1+1)n 0(α1+1)n,(α1+1)n

0(α2+1)n,(α1+1)n I(α2+1)n

0(α3+1)n,(α1+1)n 0(α3+1)n,(α1+1)n

⎤⎥⎥⎦

H3 =

⎡⎢⎢⎣
0n,(α3+1)n 0n,r 0n,p

0(α1+1)n,(α3+1)n 0(α1+1)n,r 0(α1+1)n,p

0(α2+1)n,(α3+1)n 0(α2+1)n,r 0(α2+1)n,p

I(α3+1)n 0(α3+1)n,r 0(α3+1)n,p

⎤⎥⎥⎦.
Proof: First, we choose the following LKF:

V (t) =
4


i=1

Vi (t) (14)

where

V1(t) = ζ T (t)PN ζ(t), ζ
T (t) = [x T (t) �T (x) �T (x) �T (x)]

V2(t) =
� t

t−h1

x T (v)[Q1 + (v − t + h1)R1]x(v)dv

V3(t) =
� t−h1

t−h2

x T (v)[Q2 + (v − t + h2)R2]x(v)dv

V4(t) =
� t

t−τ
ψT (x(v))[Q3 + (v − t + τ )R3]ψ(x(v))dv

�(x) =
� 0

−h1

F (v)x(t + v)dv

�(x) =
� −h1

−h2

F (v)x(t + v)dv

�(x) =
� 0

−τ
G (v)ψ(x(t + v))dv.

For the chosen LKF (14), by applying Lemma 1, it yields� t

t−h1

x T (v)Q1x(v)dv ≥ �T (x)(W1 ⊗ Q1)�(x) (15)� t−h1

t−h2

x T (v)Q2x(v)dv ≥ �T (x)(W2 ⊗ Q2)�(x) (16)� t

t−τ
ψT (x(v))Q3ψ(x(v))dv ≥ �T (x)(W3 ⊗ Q3)�(x). (17)

From (14) and (15), one has

V (t) ≥ ζ T (t)P̂N ζ(t)

+
� t

t−h1

x T (v)(v − t + h1)R1x(v)dv

+
� t−h1

t−h2

x T (v)(v − t + h2)R2x(v)dv

+
� t

t−τ
ψT (x(v))(v − t + τ )R3ψ(x(v))dv. (18)
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Therefore, the positiveness of V (t) results from the condi-
tions S1 > 0, R1 > 0, S2 > 0, R2 > 0, and P̂N > 0.

By defining ϑT (t) = [ẋ T (t), x T (t), x T (t − h1), x T (t − h2),
ψT (x(t)), ψT (x(t − τ )),�T (x), �T (x),�T (x), 	T (t), ωT (t)],
it leads to

ζ(t) = Mϑ(t), ζ̇ (t) = Hϑ(t). (19)

Then, V̇ (t) is obtained as

V̇1(t) = 2ζ T (t)PN ζ̇ (t) = 2ϑT (t)H T PN Mϑ(t) (20)

V̇2(t) = x T (t)(Q1 + h1 R1)x(t)− x T (t − h1)Q1x(t − h1)

−
� t

t−h1

x T (v)R1x(v)dv (21)

V̇3(t) = x T (t − h1)(Q2 + h R2)x(t − h1)− x T (t − h2)

× Q2x(t − h2)−
� t−h1

t−h2

x T (v)R2x(v)dv (22)

V̇4(t) = ψT (x(t))(Q3 + τ R3)ψ(x(t))

−ψ(x(t − τ ))Q3ψ(x(t − τ ))

−
� t

t−τ
ψT (x(v))R3ψ(x(v))dv. (23)

From the definitions of �(x), �(x), and �(x) in (14), their
derivatives are computed as

�̇(x) = F (0)x(t)− F (−h1)x(t − h1)

−�F � 0

−h1

F (v)x(t + v)dv (24)

�̇(x) = F (−h1)x(t − h1)− F (−h2)x(t − h2)

−�F � −h1

−h2

F (v)x(t + v)dv (25)

�̇(x) = G (0)x(t)− G (−τ )x(t − τ )

− �G� 0

−τ
G (v)ψ(x(t + v))dv (26)

where �G = G ⊗ I(α1+1)n and �F = F ⊗ I(α2+1)n .
To ensure the H∞ stability of the system (9) based on the

triggering condition (6), the following condition should be
satisfied:

V̇ (t)+ zT (t)z(t)− γ 2ωT (t)ω(t)

≤
4


i=1

V̇i(t)+ zT (t)z(t)− γ 2ωT (t)ω(t)

+ δϑT (t)ET
1 �E1ϑ(t)− 	T (t)�	(t)

+ σ − σ
1
3 x T (t)x(t)+ σ

1
3 x T (t)x(t) < 0. (27)

Applying Lemma 1 to handle the integral terms in V̇i (t)
leads to

−
� t

t−h1

x T (v)R1 x(v)dv ≤ −�T (x)(W1 ⊗ R1)�(x)

(28)

−
� t−h1

t−h2

x T (v)R2 x(v)dv ≤ −�T (x)(W2 ⊗ R2)�(x)

(29)

−
� t

t−τ
ψT (x(v))R3ψ(x(v))dv ≤ −�T (x)(W3 ⊗ R3)�(x).

(30)

On the other hand, from (3), it leads to

[x T (t) ψT (x(t))]
�

L̄1 L̄2

L̄ T
2 I

��
x(t)

ψ(x(t))

�
≤ 0

which results in

−νϑT (t)ET
2 L̄ E2ϑ(t) ≥ 0 (31)

for any ν > 0.
Combining (28)–(30), (31) is further ensured by

ϑ̂T (t)�ϑ̂(t)+ σ − σ
1
3 x T (t)x(t) < 0 (32)

where ϑ̂T (t) = [ϑT (t) zT (t) ].
Based on Y ϑ̂(t) = 0 and constructed X , one gets

ϑ̂T (t)(� + H e(X Y ))ϑ̂(t)+ σ − σ
1
3 x T (t)x(t) < 0. (33)

When �x(t)� ≥ σ (1/3), one can get σ (2/3) − x T (t)x(t) ≤ 0.
Since the condition (13) guarantees �+ H e(X Y ) < 0, it is
obtained that (33) is guaranteed, which further ensures

V̇ (t)+ zT (t)z(t)− γ 2ωT (t)ω(t) < 0. (34)

It is noted that the closed-loop system (9) with ω(t) = 0 is
uniformly ultimately bounded based on Definition 1. Integrat-
ing both sides of (34) over [0, ∞] and with the zero initial
condition, one has

	 ∞
0 zT (t)z(t)dt < γ 2

	 ∞
0 ωT (t)ω(t)dt .

Considering Definition 1 in [20], the closed-loop system (9)
is ensured to be uniformly ultimately bounded. �

According to Theorem 1, the corresponding control synthe-
sis conditions are provided in Theorem 2.

Theorem 2: For given constants τ , h, h1, μ, ν, and δ,
considering the METS (4), the system (9) is uniformly ulti-
mately bounded with a prescribed H∞ index γ if there exist
symmetric matrices PN , � > 0, Q1 > 0, Q2 > 0, Q3 > 0,
R1 > 0, R2 > 0, and R3 > 0 and matrices X1, X2, Z , and W
such that (12) and⎡⎣ �̂1 �2 �3

�T
2 −I 0

�T
3 0 −μH e(W )

⎤⎦ + H e(X̂ Ŷ ) < 0 (35)

where

�̂1 = H e(H T PN M) + δET
1 �E1 − νET

2 L̄ E2

+ diag{0n,�12,�13,�14,�15,�16,�17,�18,

�19,�110,�111}
�T

3 = [�31 �32 0m,4n 0m,(α1+1)n �33

0m,(α3+1)n �34 0m]
�31 = (X1 B−BW )T , �32 = (X2 B−BW )T

�33 = (ZC1I2)
T , �34 = −Z T

X̂ = [X̂1 X̂2], Ŷ = [Ŷ1 Ŷ2 Ŷ3]
X̂1 =

�
In 0n 0n,4n 0n,(α1+1)n 0n,(α2+1)n

0n In 0n,4n 0n,(α1+1)n 0n,(α2+1)n

�
X̂2 =

�
0n,(α3+1)n 0n,r 0n,p 0n,q 0n,m

0n,(α3+1)n 0n,r 0n,p 0n,q 0n,m

�T

Ŷ1 =
�−X1 X1 A 0n,2n X1 N0 X1 N1

−X2 X2 A 0n,2n X2 N0 X2 N1

�
Ŷ2 =

�
0n,(α1+1)n B ZC1I2 0n,α2n X1 N2I1

0n,(α1+1)n B ZC1I2 0n,α2n X2 N2I1

�
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Ŷ3 =
�

0n,α3n −B Z X1 D1 0n,q 0n,m

0n,α3n −B Z X2 D1 0n,q 0n,m

�
.

Moreover, the controller gain is obtained as K = W−1 Z .
Proof: The condition (13) in Theorem 1 can be rewritten

as

H⊥T
(�+ H e(X Y ))H⊥ < 0 (36)

where

H⊥ =
�
H⊥

1
H⊥

2

�
, R =

�
�+ H e(X Y ) 0

0 0

�
H⊥

1 = diag{I, I, I, I, I, I, . . . , I� �� �
α1+α2+α3+3

, I, I, I }

H⊥
2 = [0m,6n 0m,(α1+1)n K C1I2

0m,(α3+1)n − K 0m,p 0m,q ].

Based on the structure of H⊥, the matrix H satisfying
HH⊥ = 0 is given as

H = [0m,6n 0m,(α1+1)n K C1I2

0m,(α3+1)n − K 0m,p 0m,q − Im]. (37)

To deal with the nonlinear terms X1 B K C1 and X2 B K C1

in (36), the matrix M is constructed as

M = [M1 M2 0m,4n 0m,(α1+1)n 0m,(α2+1)n

0m,(α3+1)n 0m,r 0m,p 0m,q μW T ]T (38)

where

M1 = (BW−X1 B)T , M2 = (BW−X2 B)T .

Then, by applying the well-known Finsler lemma in [39]
to (36) with (37) and (38), it gives

R + H e(MH) < 0 (39)

which is equivalent to (35). Thus, the proof is ended. �
Remark 6: When we choose C1 = I , the corresponding

state feedback controller designing conditions can be derived
from Theorem 2 directly. In such a state feedback case, our
controller designing method for neural networks has no rank
constraint on the control matrix B , while it is always required
in some existing results [15], [27].

Remark 7: The obtained results based on LMI condi-
tions in Theorem 2 can be solved by MATLAB tool-
box directly. The computation complexity of Theorem 2 is
mainly dependent on the amount of decision variables (ℵ =
(((1 + (

�3
i=1 αi + 4)n)(

�3
i=1 αi + 4)n)/2)) in the Lyapunov

variable PN , where αi (i = 1, 2, 3) mean the degrees of the
vectors g(v) and f(v) and n is the number of the state variable.
As the growth of αi , computation complexity is increasing.
However, less conservative results can be derived with higher
computation complexity, which is shown in the following
example.

TABLE I

DATA PACKET FORMAT

IV. EXAMPLE

Example 1: In this section, a cosimulation of a computer and
a practical wireless network is implemented, shown in Fig. 1,
where the system plant is carried out in computer and the con-
trol signals are propagated via the practical wireless network,
which is connected with the computer via Arduino board.
Some descriptions of the practical wireless network are given.
The data packet transmitted via the ZigBee module is formed
in Table I. In this experiment, the sampling period is 0.02 s and
each control signal is represented by two bytes. If there are two
control signals ŷ1(sk) and ŷ2(sk), the length of the data packet
will be 11 bytes. The period of one transmission of the ZigBee
module is 0.352 ms. According to the data sheet of the ZigBee
module, the consumption energy of each transmission for one
data packet is computed as 3.3 V × 30 mA × 0.352 ms =
0.034848 mJ, where 3.3 V is the operating voltage and 30 mA
is the current during the transmission. From Fig. 1, one can see
that the sender connected with the computer is used to send the
triggered data to the network and receive the transmitted data
from the network. Note that each data will be transmitted four
times, that is, from the sender to the router, from the router
to the receiver, from the receiver to the router, and from the
router to the sender.

Then, the control issue of neural networks is applied to solve
the synchronization problem of master–slave neural networks
described as⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ̇ (t) = −Aθ(t)+ N0φ(θ(t))+ N1φ(θ(t − τ ))

+ N2

� 0

−τ
g(v)φ(θ(t + v))dv

ϑ(t) = C1θ(t)

(40)

and⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂θ(t) = −Aθ̂ (t)+ N0φ(θ̂ (t))+ N1φ(θ̂ (t − τ ))

+ N2

� 0

−τ
g(v)φ(θ̂(t + v))dv + Bu(t)+ D1ω(t)

ϑ̂(t) = C1θ̂ (t).

(41)

By defining x(t) = θ̂ (t) − θ(t), y(t) = ϑ̂(t) − ϑ(t),
ψ(x(t)) = φ(θ̂(t)) − φ(θ(t)), and ψ(x(t − τ )) = φ(θ̂(t −
τ ))−φ(θ(t −τ )), the synchronization of systems (40) and (41)
is transformed into the control system (1) with the following
parameters:

A = diag{−2, 0.2, − 1, − 3}

B =

⎡⎢⎢⎣
0.1
0.4
0.2
0.1

⎤⎥⎥⎦, N0 =

⎡⎢⎢⎣
−0.1 1.1 0.2 0.3
0.1 −0.1 0.2 0.2
0.3 0.8 −0.5 1.2
0.4 −0.1 1.3 −0.4

⎤⎥⎥⎦
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Fig. 1. Experiment setup.

N1 =

⎡⎢⎢⎣
0.1 0.2 0 0.5
0.2 0.1 0.2 0.2
0.4 0.2 0.2 −0.1

−0.3 −0.1 0.2 −0.3

⎤⎥⎥⎦, D1 =

⎡⎢⎢⎣
0.5
0.5
0.5
0.5

⎤⎥⎥⎦

N2 =

⎡⎢⎢⎣
−0.8 0.7 0.2 0.1
−0.4 −0.6 0.3 −0.5
1.2 −0.4 −0.7 −0.2
0.5 −0.5 1.3 −0.5

⎤⎥⎥⎦, D2 =

⎡⎢⎢⎣
0.1
0.1
0.1
0.1

⎤⎥⎥⎦
C1 =

�
1 0 0 1
0 1 1 1

�
, C2 = I4, ψi (xi) = tanh(0.1xi)

L1 = 04, L2 = diag{0.1, 0.1, 0.1, 0.1}.
As in [37] and [40], the probability density g(v) of com-

munication delays among neurons is usually approximated by
a gamma distribution, which can be viewed as the distributed
delay kernel. In this example, the upper bound of the commu-
nication delays is considered as τ = 0.25, and then, the para-
meters of g(v) are selected as g(v) = −1230ve35v, v ∈
[−τ, 0] to satisfy the mathematic expression of gamma distri-
bution and the feature of probability density

	 0
−τ g(v)dv = 1.

Based on ġ(v) = 35(−1230ve35v)+(−1230e35v) and Assump-
tion 1 for αi = 1 (i = 1, 2, 3), another term −1230e35v is
added in g(v), which is given as

g(v) =
�

g1(v)
g2(v)

�
=

�−1230ve35v

−1230e35v

�
, G =

�
35 1
0 35

�
G (v) = g(v)⊗ In, I1 = [In 0n,α1n]�G = G ⊗ In, W −1

3 =
� 0

−τ
g(v)gT (v)dv.

Following the similar way for g(v), we choose

f(v) =
�

f1(v)
f2(v)

�
=

�
1/h
v/h

�
, F =

�
0 0
1 0

�
F (v) = f(v)⊗ In, �F = F ⊗ In

W −1
1 =

� 0

−h1

f(v)fT (v)dv, W −1
2 =

� −h1

−h2

f(v)fT (v)dv.

For τ = 0.25, h1 = 0.04, h = 0.08, h2 = h + h1 = 0.12,
μ = 0.5, ν = 20, δ = 0.1, and σ = 10−6, the number

TABLE II

H∞ PERFORMANCE γ FOR DIFFERENT VALUES OF αi , i = 1, 2, 3

of decision variables (ℵ) in PN and the H∞ performance γ
computed by Theorem 2 for αi = 1 and αi = 2 (i = 1, 2, 3)
are derived in Table II. When αi = 2, the third terms of
g(v) and f(v) are selected as g3(v) = −1230v2e35v and
f3(v) = v2/h2, and the corresponding parameters can be
obtained based on the same process of αi = 1, which are
omitted here.

It is observed from Table II that the H∞ performance is
improved as we increase α1, α2, and α3. However, the larger
α1, α2, and α3 are chosen, and the more decision variables in
matrix P̂N will be used, which leads to higher computation
burden and complexity. This illustrates that the proposed
method has the potential to reduce the conservatism by
increasing α1, α2, and α3 at the cost of increasing com-
putation complexity. The tradeoff between complexity and
conservatism can be considered as: if the system performance
is preferred to complex computation, one can increase the
values of α1, α2, and α3 to reduce conservatism. Otherwise,
reduce these parameters to meet the required computational
level.

The following simulations for the case α1 = α2 = α3 = 1
and case α1 = α2 = α3 = 2 are executed.

Based on Theorem 2 with α1 = α2 = α3 = 1, the cor-
responding controller gain K and triggering parameter � are
obtained as

K = [−0.5569 − 1.7025], � =
�

1.5952 4.8693
4.8693 14.8859

�
.

For α1 = α2 = α3 = 2, K and � are computed as

K = [1.5094 − 2.7679], � =
�

2.1921 −3.9772
−3.9772 7.2917

�
.
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Fig. 2. State responses x(t) and release instants for α1 = α2 = α3 = 1.

Fig. 3. State responses x(t) and release instants for α1 = α2 = α3 = 2.

In the experiment, the considered master–salve type of
neural networks is simulated in the computer and the proposed
METS is also executed in it. The proposed METS is utilized to
determine which signal should be transmitted to the controller.
If a signal satisfies the triggering condition in METS, it will be
triggered and send to the controller over the wireless network.
Then, the triggered signal is used to control the slave system
to track the master neural network. The exogenous disturbance

is considered as ω(t) =
�

2sin(0.5π t), 0 < t < 6 s

0, otherwise.
With the zero initial condition x(0) = [0 0 0 0]T , sampling
step 0.002 s, and the above parameters, the trajectories of state
responses and release time intervals are shown in Fig. 2 for
α1 = α2 = α3 = 1. The corresponding curves under α1 =
α2 = α3 = 2 are shown in Fig. 3. According to these figures,
it is obvious that the states of system are well stabilized when
the external disturbance happens, which also implies that the
neural networks (40) and (41) can be synchronized via the
proposed METS control strategy.

TABLE III

NUMBER OF TRIGGERED EVENTS AND THE NETWORK ENERGY

CONSUMPTION UNDER THE SAME γ = 0.8

To show the effectiveness of the proposed METS for
saving the precious communication resources, the stochastic
disturbance ω(t) = 0.2 sin(0.5π t) + β(t) for 0 < t < 6 s
(otherwise, ω(t) = 0) is considered, where β(t) is a uniformly
distributed random variable satisfying |β(t)| ≤ 1. Choose
σ = 10−6 and the same H∞ performance γ = 0.8. The
comparison results of the amount of events generated by our
METS with α1 = α2 = α3 = 1 and some existing ETSs are
given in Table III, in which the energy values are computed
by the formula E = ℵ × 0.034848 mJ × 4.

From Table III, one observes that the proposed METS (4)
outperforms some existing ETSs on the energy consumed by
wireless networks. Specially, compared to the existing ETS in
[36] and ETS in [20], 49.74% and 35.47% energy can be saved
by the proposed METS (4) with h = 0.07. This demonstrates
the superiority of our proposed METS.

Remark 8: The proposed method is not specific to the
master–slave type of neural networks. It can be applied to
a class of artificial neural networks and the practical systems
modeled by artificial neural networks satisfying the system
model (1). For instance, the proposed method is applied to
control a numerical artificial neural network and a Chua’s
circuit modeled by our presented system model in the next
two examples.

Example 2: Choose the system (1) with the following
parameters:

A =
�−0.4 0

0 0.2

�
, B =

�
0
1

�
, N0 =

� −0.1 0.1
0.1 −0.1

�
N1 =

�−0.1 0.2
0.2 −0.1

�
, N2 =

�−0.8 0.7
−0.4 −0.6

�
C1 =

�
0.5 2
0 1

�
, C2 = I2, D1 =

�
0.2
0.1

�
, D2 =

�
0.1
0.1

�
ψi (xi) = tanh(0.1xi), i = 1, 2.

ψ(x) satisfies condition (3) with L1 = 02 and L2 =
diag{0.1 0.1}.

Select τ = 0.25, h1 = 0.04, h = 0.08, h2 = h + h1 = 0.12,
μ = 0.5, ν = 20, δ = 0.1, σ = 10−6, and α1 = α2 = 1.

In order to illustrate the advantage of the proposed method
for dealing with the distributed delay term with kernel over the
method based on Legendre polynomials in [37], the following
comparisons are provided.

Moreover, Legendre polynomials given in the following are
applied to approximate the kernel g(v). For a chosen α3,
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TABLE IV

COMPARISON RESULTS OF ℵ AND γ

Fig. 4. g(v) and ĝ(v) with α3 = 2, . . . , 5.

the approximated function ĝ(v) is expressed as

ĝ(v) =
α3


i=0

2i + 1

τM

� 0

−τM

g(v)Li

�−v
τM

�
dv

where Li (−v/τM ) = (−1)i
�i

j=0(−1) j
�

i
j

�� i+ j
j

�
(−v/τM)

j .
The corresponding curves of the kernel g(v) and the approxi-
mated function ĝ(v) for different degrees are shown in Fig. 4.
From Fig. 4, one observes that the larger α3 is chosen,
and the better performance of the approximation for g(v) is
obtained. As the increase of α3, much more decision variables
are needed by using Legendre polynomials. The amounts of
decision variables (ℵ) in PN and H∞ performance γ with the
Legendre polynomials and our presented approach are derived
in Table IV. From this table, it is seen that both ℵ and γ
obtained by our method are smaller than the values obtained
by the method in [37]. These illustrate that our method
handling the kernel g(v) without approximation error is less
conservative than the one based on Legendre polynomials.

Example 3: In this example, we show that the considered
system (1) can model some practical systems by choosing
appropriate parameters. One of them is Chua’s circuit, which
is borrowed from [41] and modeled as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1(t) = −am1x1(t)+ ax2(t)− a(m0 − m1)λ(x1(t))

ẋ2(t) = x1(t)− x2(t)+ x3(t)

ẋ3(t) = −bx2(t)

y(t) = x1(t)

(42)

Fig. 5. Trajectories of the state and release instants.

TABLE V

ℵ FOR DIFFERENT VALUES OF δ

with a = 9, b = 14.28, c = 0.1, m0 = −(1/7), and m1 = 2/7
and the nonlinearities of Chua’s diode

λ(x1(t)) = 0.5(m1 − m0)(|x1(t)+ 1| − |x1(t)− 1|).
Then, without considering the discrete and distributed

delays and the disturbance, the closed-loop system of Chua’s
circuit can be transformed into the system (1) with

A =
⎡⎢⎣−18

7
9 0

1 −1 1
0 −14.28 0

⎤⎥⎦, N0 =
⎡⎢⎣

27

7
0
0

⎤⎥⎦
C1 = [1 0 0]

ψ(x1(t)) = λ(x1(t)), L0 = 1, L2 = 1

N1 = N2 = 0, B = I3, ω(t) = 0.

By selecting h1 = 0.02, h = 0.04, h2 = h + h1 = 0.06,
μ = 1, ν = 10, δ = 0.1, σ = 10−6, and α1 = α2 = α3 = 1,
the controller gain and triggering matrix are solved as

K = [−1.6458 − 0.5361 2.0769]T , � = 39.6878.

In the simulation, based on the same experiment setup
in Example 1 and choosing the initial condition x(0) =
[2.1 0.7 −0.6T ], the state response trajectories and release time
intervals are given in Fig. 5. From this figure, one can see that
the synchronization error system state of Chua’s circuit can
be stabilized well by our proposed memory-event-triggered
control approach.

In addition, the number of triggering events under different
values of δ is given in Table V. From this table, one can see
that a larger value of σ is chosen, and fewer events will be
triggered. On the contrary, a smaller σ will result in more
triggering events.
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V. CONCLUSION

This article focuses on the memory-event-triggered H∞
output control issue of neural networks with discrete and
distributed delays. A novel METS utilizing the mean of
system output is presented to reduce the signal communication
frequency. Compared with some existing ETMs based on
instant system information, the proposed METS can decrease
more data transmission. By using the Finsler lemma, a decom-
position method is employed to extract the controller gain from
system matrices and introduced variables. Resorting to a novel
integral inequality technique, sufficient synthesis conditions
for designing the event-triggered H∞ static output controller
are obtained via LMIs. Some cosimulations are executed to
confirm the validity of the developed approach.
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